Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 52(10): 1190-1201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35234088

RESUMO

The main purpose of the present study is to introduce the biochemical characteristics of the industrial valuable thermostable pullulan degrading enzyme from Desulfurococcus mucosus DSM2162. Recombinant protein was purified by a combination of thermal treatment and affinity chromatography, with a yield of 15.94% and 7.69-fold purity. Purified enzyme showed the molecular mass of 55,787 Da with optimum activity at 70 °C and a broad range of pH (5.0-9.0) with kcat of 2150 min-1 and Km of 6.55 mg.mL-1, when using starch as substrate. The enzyme activity assay on various polysaccharide substrates revealed the substrate preference of pullulan > amylopectin > ß cyclodextrin > starch > glycogen; therefore, it classified as a neopullulanase. The neopullulanase structural analysis by spectrofluorometer, FT-IR, and circular dichroism spectroscopy indicated the corporation of α-helix (47.3%) and ß-sheet (31.6%) in its secondary structure. The melting temperature and specific heat capacity calculations using differential scanning calorimetry confirmed its extreme thermal stability. Further, salt-elevated concentrations resulted in oligomeric state dominancy without any significant influence on the starch-degrading ability. The newly cloned archaeal neopullulanase was with broad activity on polysaccharide substrates, with thermal and salt stability. Thus, the Desulfurococcus mucosus DSM2162 neopullulanase can be introduced as a good candidate to be used in carbohydrate industry.


Assuntos
Archaea , Desulfurococcaceae , Archaea/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Especificidade por Substrato , Glicosídeo Hidrolases/metabolismo , Amido/metabolismo , Polissacarídeos , Desulfurococcaceae/genética , Desulfurococcaceae/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
2.
J Bacteriol ; 203(16): e0002521, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096778

RESUMO

Serine kinase catalyzes the phosphorylation of free serine (Ser) to produce O-phosphoserine (Sep). An ADP-dependent Ser kinase in the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-SerK) is involved in cysteine (Cys) biosynthesis and most likely Ser assimilation. An ATP-dependent Ser kinase in the mesophilic bacterium Staphylococcus aureus is involved in siderophore biosynthesis. Although proteins displaying various degrees of similarity with Tk-SerK are distributed in a wide range of organisms, it is unclear if they are actually Ser kinases. Here, we examined proteins from Desulfurococcales species in Crenarchaeota that display moderate similarity with Tk-SerK from Euryarchaeota (42 to 45% identical). Tk-serK homologs from Staphylothermus marinus (Smar_0555), Desulfurococcus amylolyticus (DKAM_0858), and Desulfurococcus mucosus (Desmu_0904) were expressed in Escherichia coli. All three partially purified recombinant proteins exhibited Ser kinase activity utilizing ATP rather than ADP as a phosphate donor. Purified Smar_0555 protein displayed activity for l-Ser but not other compounds, including d-Ser, l-threonine, and l-homoserine. The enzyme utilized ATP, UTP, GTP, CTP, and the inorganic polyphosphates triphosphate and tetraphosphate as phosphate donors. Kinetic analysis indicated that the Smar_0555 protein preferred nucleoside 5'-triphosphates over triphosphate as a phosphate donor. Transcript levels and Ser kinase activity in S. marinus cells grown with or without serine suggested that the Smar_0555 gene is constitutively expressed. The genes encoding Ser kinases examined here form an operon with genes most likely responsible for the conversion between Sep and 3-phosphoglycerate of central sugar metabolism, suggesting that the ATP-dependent Ser kinases from Desulfurococcales play a role in the assimilation of Ser. IMPORTANCE Homologs of the ADP-dependent Ser kinase from the archaeon Thermococcus kodakarensis (Tk-SerK) include representatives from all three domains of life. The results of this study show that even homologs from the archaeal order Desulfurococcales, which are the most structurally related to the ADP-dependent Ser kinases from the Thermococcales, are Ser kinases that utilize ATP, and in at least some cases inorganic polyphosphates, as the phosphate donor. The differences in properties between the Desulfurococcales and Thermococcales enzymes raise the possibility that Tk-SerK homologs constitute a group of kinases that phosphorylate free serine with a wide range of phosphate donors.


Assuntos
Proteínas Arqueais/metabolismo , Desulfurococcaceae/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Desulfurococcaceae/classificação , Desulfurococcaceae/genética , Temperatura Alta , Cinética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Commun Biol ; 4(1): 132, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514861

RESUMO

The metallo-ß-lactamase fold is an ancient protein structure present in numerous enzyme families responsible for diverse biological processes. The crystal structure of the hyperthermostable crenarchaeal enzyme Igni18 from Ignicoccus hospitalis was solved at 2.3 Å and could resemble a possible first archetype of a multifunctional metallo-ß-lactamase. Ancestral enzymes at the evolutionary origin are believed to be promiscuous all-rounders. Consistently, Igni18´s activity can be cofactor-dependently directed from ß-lactamase to lactonase, lipase, phosphodiesterase, phosphotriesterase or phospholipase. Its core-domain is highly conserved within metallo-ß-lactamases from Bacteria, Archaea and Eukarya and gives insights into evolution and function of enzymes from this superfamily. Structural alignments with diverse metallo-ß-lactamase-fold-containing enzymes allowed the identification of Protein Variable Regions accounting for modulation of activity, specificity and oligomerization patterns. Docking of different substrates within the active sites revealed the basis for the crucial cofactor dependency of this enzyme superfamily.


Assuntos
Desulfurococcaceae/enzimologia , Evolução Molecular , beta-Lactamases/metabolismo , Cristalografia , Desulfurococcaceae/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , beta-Lactamases/química , beta-Lactamases/genética
4.
Arch Microbiol ; 203(4): 1299-1308, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33325001

RESUMO

Radiation of ionizing or non-ionizing nature has harmful effects on cellular components like DNA as radiation can compromise its proper integrity. To cope with damages caused by external stimuli including radiation, within living cells, several fast and efficient repair mechanisms have evolved. Previous studies addressing organismic radiation tolerance have shown that radiotolerance is a predominant property among extremophilic microorganisms including (hyper-) thermophilic archaea. The analysis of the ionizing radiation tolerance of the chemolithoautotrophic, obligate anaerobic, hyperthermophilic Crenarchaeon Ignicoccus hospitalis showed a D10-value of 4.7 kGy, fourfold exceeding the doses previously determined for other extremophilic archaea. The genome integrity of I. hospitalis after γ-ray exposure in relation to its survival was visualized by RAPD and qPCR. Furthermore, the discrimination between reproduction, and ongoing metabolic activity was possible for the first time indicating that a potential viable but non-culturable (VBNC) state may also account for I. hospitalis.


Assuntos
Replicação do DNA/efeitos da radiação , Desulfurococcaceae/efeitos da radiação , Desulfurococcaceae/genética , Desulfurococcaceae/crescimento & desenvolvimento , Desulfurococcaceae/metabolismo , Extremófilos , Genoma Arqueal/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Doses de Radiação , Tolerância a Radiação , Radiação Ionizante
5.
Nucleic Acids Res ; 48(12): 6906-6918, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32459340

RESUMO

The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m5U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m5U54 is subsequently thiolated to form m5s2U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m1s4Ψ. The methyl and thiol groups in m1s4Ψ and m5s2U are presented within the T-loop in a spatially identical manner that stabilizes the 3'-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m1A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.


Assuntos
Desulfurococcaceae/genética , Nanoarchaeota/genética , Conformação de Ácido Nucleico , RNA de Transferência/ultraestrutura , Archaea/genética , Archaea/ultraestrutura , Escherichia coli/genética , Metilação , Filogenia , RNA de Transferência/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/ultraestrutura
6.
Syst Appl Microbiol ; 42(1): 94-106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30195930

RESUMO

Three thermophilic Nanoarchaeota-Crenarchaeota symbiotic systems have been described. We obtained another stable anaerobic enrichment culture at 80°C, pH 6.0 from a New Zealand hot spring. The nanoarchaeote (Ncl-1) and its host (NZ3T) were isolated in co-culture and their genomes assembled. The small (∼200nm) flagellated cocci were often attached to larger cocci. Based on 16S rRNA gene similarity (88.4%) and average amino acid identity (52%), Ncl-1 is closely related to Candidatus Nanopusillus acidilobi. Their genomes both encode for archaeal flagella and partial glycolysis and gluconeogenesis pathways, but lack ATP synthase genes. Like Nanoarchaeum equitans, Ncl-1 has a CRISPR-Cas system. Ncl-1 also relies on its crenarchaeotal host for most of its biosynthetic needs. The host NZ3T was isolated and grows on proteinaceous substrates but not on sugars, alcohols, or fatty acids. NZ3T requires thiosulfate and grows best at 82°C, pH 6.0. NZ3T is most closely related to the Desulfurococcaceae, Ignisphaera aggregans (∼92% 16S rRNA gene sequence similarity, 45% AAI). Based on phylogenetic, physiological and genomic data, Ncl-1 and NZ3T represent novel genera in the Nanoarchaeota and the Desulfurococcaceae, respectively, with the proposed names Candidatus Nanoclepta minutus and Zestosphaera tikiterensis gen. nov., sp. nov., type strain NZ3T (=DSMZ 107634T=OCM 1213T).


Assuntos
Desulfurococcaceae/classificação , Fontes Termais/microbiologia , Filogenia , Simbiose , Desulfurococcaceae/genética , Genoma Arqueal , Nova Zelândia , RNA Ribossômico 16S/genética
7.
Folia Microbiol (Praha) ; 63(6): 713-723, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29797222

RESUMO

Desulfurococcus amylolyticus DSM 16532 is an anaerobic and hyperthermophilic crenarchaeon known to grow on a variety of different carbon sources, including monosaccharides and polysaccharides. Furthermore, D. amylolyticus is one of the few archaea that are known to be able to grow on cellulose. Here, we present the metabolic reconstruction of D. amylolyticus' central carbon metabolism. Based on the published genome, the metabolic reconstruction was completed by integrating complementary information available from the KEGG, BRENDA, UniProt, NCBI, and PFAM databases, as well as from available literature. The genomic analysis of D. amylolyticus revealed genes for both the classical and the archaeal version of the Embden-Meyerhof pathway. The metabolic reconstruction highlighted gaps in carbon dioxide-fixation pathways. No complete carbon dioxide-fixation pathway such as the reductive citrate cycle or the dicarboxylate-4-hydroxybutyrate cycle could be identified. However, the metabolic reconstruction indicated that D. amylolyticus harbors all genes necessary for glucose metabolization. Closed batch experimental verification of glucose utilization by D. amylolyticus was performed in chemically defined medium. The findings from in silico analyses and from growth experiments are discussed with respect to physiological features of hyperthermophilic organisms.


Assuntos
Desulfurococcaceae/metabolismo , Glucose/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Desulfurococcaceae/genética , Fermentação , Genoma Bacteriano , Gluconeogênese , Glicólise , Redes e Vias Metabólicas
8.
Enzyme Microb Technol ; 114: 15-21, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29685348

RESUMO

Desulfurococcus amylolyticus is an anaerobic and hyperthermophilic crenarchaeon that can use various carbohydrates as energy sources. We found a gene encoding a glycoside hydrolase family 57 amylolytic enzymes (DApu) in a putative carbohydrate utilization gene cluster in the genome of D. amylolyticus. This gene has an open reading frame of 1,878 bp and consists of 626 amino acids with a molecular mass of 71 kDa. Recombinant DApu (rDApu) completely hydrolyzed pullulan to maltotriose by attacking α-1,6-glycosidic linkages, and was able to produce glucose and maltose from soluble starch and amylopectin. Although rDApu showed no activity toward α-cyclodextrin (CD) and ß-CD, maltooctaose (G8) was detected from reaction with γ-CD. The highest activity of rDApu was measured at pH 5.0 and 95 °C. The half-life of rDApu was 12.7 h at 95 °C and 27 min at 98 °C. Interestingly, rDApu was able to transfer a maltose unit to 6-O-α-maltosyl-ß-CD via transglycosylation. Structure analysis using MALDI-TOF/TOF MS and nuclear magnetic resonance revealed that the new transglycosylated products were 61, 64-di-O-maltosyl-ß-CD and 61, 63, 65-tri-O-maltosyl-ß-CD.


Assuntos
Proteínas Arqueais/química , Ciclodextrinas/metabolismo , Desulfurococcaceae/enzimologia , Glicosídeo Hidrolases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Clonagem Molecular , Ciclodextrinas/química , Desulfurococcaceae/química , Desulfurococcaceae/genética , Estabilidade Enzimática , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Maltose/análogos & derivados , Maltose/química , Maltose/metabolismo , Peso Molecular , Fases de Leitura Aberta , Especificidade por Substrato , Trissacarídeos/metabolismo
9.
RNA Biol ; 15(4-5): 614-622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28901837

RESUMO

tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.


Assuntos
Desulfurococcaceae/enzimologia , Methanosarcina/enzimologia , Nucleotidiltransferases/metabolismo , Pyrobaculum/enzimologia , RNA de Transferência de Histidina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Desulfurococcaceae/genética , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Methanosarcina/genética , Modelos Moleculares , Mutação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Polimerização , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Pyrobaculum/genética , RNA de Transferência de Histidina/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
Nucleic Acids Res ; 45(4): 2007-2015, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28204608

RESUMO

In all free-living organisms a late-stage checkpoint in the biogenesis of the small ribosomal subunit involves rRNA modification by an RsmA/Dim1 methyltransferase. The hyperthermophilic archaeon Nanoarchaeum equitans, whose existence is confined to the surface of a second archaeon, Ignicoccus hospitalis, lacks an RsmA/Dim1 homolog. We demonstrate here that the I. hospitalis host possesses the homolog Igni_1059, which dimethylates the N6-positions of two invariant adenosines within helix 45 of 16S rRNA in a manner identical to other RsmA/Dim1 enzymes. However, Igni_1059 is not transferred from I. hospitalis to N. equitans across their fused cell membrane structures and the corresponding nucleotides in N. equitans 16S rRNA remain unmethylated. An alternative mechanism for ribosomal subunit maturation in N. equitans is suggested by sRNA interactions that span the redundant RsmA/Dim1 site to introduce 2΄-O-ribose methylations within helices 44 and 45 of the rRNA.


Assuntos
Adenosina/metabolismo , Metiltransferases/metabolismo , Nanoarchaeota/genética , RNA Ribossômico 16S/metabolismo , Desulfurococcaceae/enzimologia , Desulfurococcaceae/genética , Escherichia coli/genética , Metilação , Metiltransferases/genética , Nanoarchaeota/enzimologia , RNA Ribossômico 16S/química , Subunidades Ribossômicas Menores de Arqueas/metabolismo
11.
FEBS J ; 283(20): 3807-3820, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27586496

RESUMO

The Crenarchaeon Ignicoccus hospitalis lives in symbiosis with Nanoarchaeum equitans providing essential cell components and nutrients to its symbiont. Ignicoccus hospitalis shows an intriguing morphology that points toward an evolutionary role in driving compartmentalization. Therefore, the bioenergetics of this archaeal host-symbiont system remains a pressing question. To date, the only electron acceptor described for I. hospitalis is elemental sulfur, but the organism comprises genes that encode for enzymes involved in nitrogen metabolism, e.g., one nitrate reductase and two octaheme cytochrome c, Igni_0955 (IhOCC) and Igni_1359. Herein, we detail functional and structural studies of the highly abundant IhOCC, including an X-ray crystal structure at 1.7 Å resolution, the first three-dimensional structure of an archaeal OCC. The trimeric IhOCC is membrane associated and exhibits significant structural and functional differences to previously characterized homologs within the hydroxylamine oxidoreductases (HAOs) and octaheme cytochrome c nitrite reductases (ONRs). The positions and spatial arrangement of the eight hemes are highly conserved, but the axial ligands of the individual hemes 3, 6 and 7 and the protein environment of the active site show significant differences. Most notably, the active site heme 4 lacks porphyrin-tyrosine cross-links present in the HAO family. We show that IhOCC efficiently reduces nitrite and hydroxylamine, with possible relevance to detoxification or energy conservation. DATABASE: Structural data are available in the Protein Data Bank under the accession number 4QO5.


Assuntos
Proteínas Arqueais/química , Citocromos c/química , Desulfurococcaceae/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Citocromos a1/química , Citocromos a1/genética , Citocromos a1/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Citocromos c1/química , Citocromos c1/genética , Citocromos c1/metabolismo , Desulfurococcaceae/genética , Desulfurococcaceae/metabolismo , Evolução Molecular , Genes Arqueais , Heme/química , Modelos Moleculares , Nitrato Redutases/química , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas , Eletricidade Estática
12.
Int J Syst Evol Microbiol ; 66(1): 514-517, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26596623

RESUMO

Representatives of the crenarchaeal genus Desulfurococcus are strictly anaerobic hyperthermophiles with an organotrophic type of metabolism. Since 1982, five Desulfurococcus species names have been validly published: Desulfurococcus mucosus, D. mobilis, D. amylolyticus, D. fermentans and D. kamchatkensis. Recently, the genomic sequences of all five species became available, promoting the refinement of their taxonomic status. Analysis of full-length high-quality 16S rRNA gene sequences shows that the sequences of D. mobilis and D. mucosus are 100 % identical and differ by 2.2 % from those of D. amylolyticus, D. fermentans and D. kamchatkensis. The latter three sequences differ from each other by 0.1-0.3 % (99.9 % similarity in the D amylolyticus-D. kamchatkensis pair and 99.7 % in the pairs involving D. fermentans). In silico prediction of DNA-DNA hybridization (DDH) values by comparison of genomes using ggdc 2.0 blast+ at http://ggdc.dsmz.de/ produced results that correlated with the 16S rRNA gene sequence similarity values. In the D. mucosus-D. mobilis and D. amylolyticus-D. kamchatkensis pairs, the predicted DDH values were 99 and 92 %, respectively, much higher than the recommended 70 % species-delimiting DDH value. Between members of different pairs, these values were no higher than 20 %. For D. fermentans, its predicted DDH values were around 70 % with D. amylolyticus and D. kamchatkensis and no higher than 20 % with D. mobilis and D. mucosus. These results indicated that D. mobilis should be reclassified as a synonym of D. mucosus, whereas D. kamchatkensis and D. fermentans should be reclassified as synonyms of D. amylolyticus.


Assuntos
Desulfurococcaceae/classificação , Fontes Termais/microbiologia , Filogenia , DNA Arqueal/genética , Desulfurococcaceae/genética , Desulfurococcaceae/isolamento & purificação , Islândia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
J Bacteriol ; 196(21): 3807-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25157085

RESUMO

The Iho670 fibers of the hyperthermophilic crenarchaeon of Ignicoccus hospitalis were shown to contain several features that indicate them as type IV pilus-like structures. The application of different visualization methods, including electron tomography and the reconstruction of a three-dimensional model, enabled a detailed description of a hitherto undescribed anchoring structure of the cell appendages. It could be identified as a spherical structure beneath the inner membrane. Furthermore, pools of the fiber protein Iho670 could be localized in the inner as well as the outer cellular membrane of I. hospitalis cells and in the tubes/vesicles in the intermembrane compartment by immunological methods.


Assuntos
Proteínas Arqueais/metabolismo , Membrana Celular/fisiologia , Desulfurococcaceae/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Proteínas Arqueais/genética , Desulfurococcaceae/genética , Desulfurococcaceae/ultraestrutura , Imuno-Histoquímica , Movimento , Conformação Proteica
14.
Appl Microbiol Biotechnol ; 97(12): 5359-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23001056

RESUMO

A gene encoding an amylopullulanase of the glycosyl hydrolase (GH) family 57 from Staphylothermus marinus (SMApu) was heterologously expressed in Escherichia coli. SMApu consisted of 639 amino acids with a molecular mass of 75.3 kDa. It only showed maximal amino acid identity of 17.1 % with that of Pyrococcus furiosus amylopullulanase in all identified amylases. Not like previously reported amylopullulanases, SMApu has no signal peptide but contains a continuous GH57N_Apu domain. It had the highest catalytic efficiency toward pullulan (k cat/K m , 342.34 s(-1) mL mg(-1)) and was extremely thermostable with maximal pullulan-degrading activity (42.1 U/mg) at 105 °C and pH 5.0 and a half-life of 50 min at 100 °C. Its activity increased to 116 % in the presence of 5 mM CaCl2. SMApu could also degrade cyclodextrins, which are resistant to the other amylopullulanases. The initial hydrolytic products from pullulan, γ-CD, and 6-O-maltooligosyl-ß-CD were [6)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1→]n, maltooctaose, and single maltooligosaccharide plus ß-CD, respectively. The final hydrolytic products from above-mentioned substrates were maltose and glucose. These results confirm that SMApu is a novel amylopullulanase of the family GH57 possessing the cyclodextrin-degrading activity of cyclomaltodextrinase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ciclodextrinas/metabolismo , Desulfurococcaceae/enzimologia , Glucanos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cloreto de Cálcio/metabolismo , Clonagem Molecular , Desulfurococcaceae/genética , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
15.
J Bacteriol ; 194(20): 5703-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23012283

RESUMO

Desulfurococcus fermentans is the first known cellulolytic archaeon. This hyperthermophilic and strictly anaerobic crenarchaeon produces hydrogen from fermentation of various carbohydrates and peptides without inhibition by accumulating hydrogen. The complete genome sequence reported here suggested that D. fermentans employs membrane-bound hydrogenases and novel glycohydrolases for hydrogen production from cellulose.


Assuntos
DNA Arqueal/química , DNA Arqueal/genética , Desulfurococcaceae/genética , Genoma Arqueal , Análise de Sequência de DNA , Anaerobiose , Metabolismo dos Carboidratos , Celulose/metabolismo , Desulfurococcaceae/isolamento & purificação , Desulfurococcaceae/fisiologia , Fermentação , Água Doce/microbiologia , Fontes Termais/microbiologia , Hidrogênio/metabolismo , Dados de Sequência Molecular , Federação Russa
16.
J Bacteriol ; 194(16): 4446-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22843584

RESUMO

Strain 1633, a novel member of the genus Thermogladius, isolated from a freshwater hot spring, is an anaerobic hyperthermophilic crenarchaeon capable of fermenting proteinaceous and cellulose substrates. The complete genome sequence reveals genes for protein and carbohydrate-active enzymes, the Embden-Meyerhof pathway for glucose metabolism, cytoplasmic NADP-dependent hydrogenase, and several energy-coupling membrane-bound oxidoreductases.


Assuntos
DNA Arqueal/química , DNA Arqueal/genética , Desulfurococcaceae/genética , Genoma Arqueal , Análise de Sequência de DNA , Anaerobiose , Celulose/metabolismo , Desulfurococcaceae/isolamento & purificação , Desulfurococcaceae/metabolismo , Desulfurococcaceae/fisiologia , Fontes Termais/microbiologia , Temperatura Alta , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Proteínas/metabolismo
17.
Antonie Van Leeuwenhoek ; 102(2): 203-19, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653377

RESUMO

The Crenarchaeon Ignicoccus hospitalis is an anaerobic, obligate chemolithoautotrophic hyperthermophile, growing by reduction of elemental sulfur using molecular hydrogen as electron donor. Together with Nanoarchaeum equitans it forms a unique, archaeal biocoenosis, in which I. hospitalis serves as host for N. equitans. Both organisms can be cultivated in a stable coculture which is mandatory for N. equitans but not for I. hospitalis. This strong dependence is affirmed by the fact that N. equitans obtains its lipids and amino acids from the host. I. hospitalis cells exhibit several unique features: they can adhere to surfaces by extracellular appendages ('fibers') which are not used for motility; they use a novel CO(2) fixation pathway, the dicarboxylate/4-hydroxybutyrate pathway; and they exhibit a unique cell envelope for Archaea consisting of two membranes but lacking an S-layer. These membranes form two cell compartments, a tightly packed cytoplasm surrounded by a weakly staining intermembrane compartment (IMC) with a variable width from 20 to 1,000 nm. In this IMC, many round or elongated vesicles are found which may function as carriers of lipids or proteins out of the cytoplasm. Based on immuno-EM analyses and immuno-fluorescence experiments it was demonstrated recently that the A(1)A(O) ATP synthase, the H(2):sulfur oxidoreductase complex and the acetyl-CoA synthetase (ACS) of I. hospitalis are located in its outermost membrane. Therefore, this membrane is energized and is here renamed as "outer cellular membrane" (OCM). Among all prokaryotes possessing two membranes in their cell envelope, I. hospitalis is the first organism with an energized outermost membrane and ATP synthesis outside the cytoplasm. Since DNA and ribosomes are localized in the cytoplasm, energy conservation is separated from information processing and protein biosynthesis in I. hospitalis. This raises questions concerning the function and characterization of the two membranes, the two cell compartments and of a possible ATP transfer to N. equitans.


Assuntos
Desulfurococcaceae/metabolismo , Aminoácidos/metabolismo , Desulfurococcaceae/classificação , Desulfurococcaceae/genética , Temperatura Alta , Nanoarchaeota/genética , Nanoarchaeota/metabolismo , Filogenia
19.
J Biol Chem ; 287(11): 7979-89, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22223643

RESUMO

Staphylothermus marinus maltogenic amylase (SMMA) is a novel extreme thermophile maltogenic amylase with an optimal temperature of 100 °C, which hydrolyzes α-(1-4)-glycosyl linkages in cyclodextrins and in linear malto-oligosaccharides. This enzyme has a long N-terminal extension that is conserved among archaic hyperthermophilic amylases but is not found in other hydrolyzing enzymes from the glycoside hydrolase 13 family. The SMMA crystal structure revealed that the N-terminal extension forms an N' domain that is similar to carbohydrate-binding module 48, with the strand-loop-strand region forming a part of the substrate binding pocket with several aromatic residues, including Phe-95, Phe-96, and Tyr-99. A structural comparison with conventional cyclodextrin-hydrolyzing enzymes revealed a striking resemblance between the SMMA N' domain position and the dimeric N domain position in bacterial enzymes. This result suggests that extremophilic archaea that live at high temperatures may have adopted a novel domain arrangement that combines all of the substrate binding components within a monomeric subunit. The SMMA structure provides a molecular basis for the functional properties that are unique to hyperthermophile maltogenic amylases from archaea and that distinguish SMMA from moderate thermophilic or mesophilic bacterial enzymes.


Assuntos
Proteínas Arqueais/química , Desulfurococcaceae/enzimologia , Glicosídeo Hidrolases/química , Proteínas Arqueais/genética , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Desulfurococcaceae/genética , Glicosídeo Hidrolases/genética , Hidrólise , Oligossacarídeos/química , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Relação Estrutura-Atividade
20.
Artigo em Inglês | MEDLINE | ID: mdl-21301087

RESUMO

Flap endonuclease 1 (FEN1) is a key enzyme in DNA repair and DNA replication. It is a structure-specific nuclease that removes 5'-overhanging flaps and the RNA/DNA primer during maturation of the Okazaki fragment. Homologues of FEN1 exist in a wide range of bacteria, archaea and eukaryotes. In order to further understand the structural basis of the DNA recognition, binding and cleavage mechanism of FEN1, the structure of FEN1 from the hyperthermophilic archaeon Desulfurococcus amylolyticus (DaFEN1) was determined at 2.00 Šresolution. The overall fold of DaFEN1 was similar to those of other archaeal FEN1 proteins; however, the helical clamp and the flexible loop exhibited a putative substrate-binding pocket with a unique conformation.


Assuntos
Proteínas Arqueais/química , Desulfurococcaceae/metabolismo , Endonucleases Flap/química , Cristalografia por Raios X/métodos , DNA/química , DNA/genética , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Desulfurococcaceae/genética , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Ligação Proteica/genética , Conformação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...